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Magnetohydrodynamic flow in rectangular ducts. I1 
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This paper is an extension of an earlier paper by Hunt (1966) on laminar motion 
of a conducting liquid in a rectangular duct under a uniform transverse magnetic 
field. The effects of the duct having conducting walls are further explored; 
in this case the duct considered has perfectly conducting walls parallel to the 
field and non-conducting walls perpendicular to the field. A solution is obtained 
for high Hartmann numbers by analysing the boundary layers on the walls. 
This solution involves an integral equation of a standard form. 

It is found that in this case, unlike the cases studied in the earlier paper, 
the velocity profiles in the boundary layers are monotonically decreasing. 
The effect of an external electrical circuit is examined, although it is found that 
i t  does not influence the form of the velocity profiles. 

1. Introduction 
The fully-developed laminar flow of uniformly conducting and incompressible 

fluids through ducts under the action of a transverse magnetic field is attracting 
considerable interest at the present time, mainly for two reasons. 

First, magnetohydrodynamic generators, pumps and accelerators are devices 
of practical importance in which conducting fluids are passed through transverse 
magnetic fields. The analysis of the flow in these devices is formidable for one 
may have to take into account the variable conductivity and density of the fluid, 
complicated potential drops between the electrodes and the fluid and the fact 
that the flow is usually turbulent. In  order to make progress in the understanding 
of the phenomena therefore, considerable simplification is necessary which may 
take various forms, e.g. (a) an assumption of slug flow (Neuringer & Migotsky 
1963), (6)  a reduction of the problem to one-dimensional gas dynamics (Resler 
& Sears 1958), (c) a two-dimensional analysis of the development of the laminar 
boundary layer on the walls in the direction of the flow (Kerrebrock 1961; 
Hale & Kerrebrock 1964), (d)  a two-dimensional analysis of the flow down the 
duct assuming that it is inviscid (Sutton & Carlson 1961), or (e) the form used in 
the present paper, two-dimensional analysis of the flow variation across the 
duct assuming that it is laminar, fully developed and that there is no variation 
of fluid properties throughout the duct. These various idealizations are comple- 
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mentary in that they each extract some of the basic physical ideas, and collec- 
tively it is hoped that they will prove useful in interpreting more complicated 
physical situations. 

Secondly, this theory of duct flows can be tested in laboratory experiments 
with liquid metals. The uncertainty in the experimental results can be reduced 
to below 1 %, and consequently these experiments provide critical tests for the 
theory, in marked contrast with the majority of magneto-fluid dynamic ex- 
periments. 

Since most magnetohydrodynamic generators and pumps have a rectangular 
cross-section, we shall confine ourselves to examining rectangular ducts. Exact 
solutions have been obtained for laminar flows of uniformly conducting incom- 
pressible fluids through rectangular ducts with thin conducting walls under 
transverse magnetic fields by Chang & Lundgren (1961), Uflyand (1961) and 
Hunt (1965). Chang & Lundgren and Uflyand analysed the case in which all the 
walls were perfectly conducting. Hunt analysed (i) the case in which the walls 
perpendicular to the field (walls BB, in figure 1) were perfectly conducting and 
those parallel to the magnetic field (walls AA) were thin and of arbitrary con- 
ductivity, and (ii) the case in which the walls BB were thin end of arbitrary 
conductivity and the walls A A  were non-conducting. Thus he included the pre- 
vious author’s analysis as a special case of (i). Hunt also examined the form of the 
solutions for large M ,  where M is the Hartmann number, and found that varying 
the conductivity of the walls AA dramatically altered the form of the velocity 
profile in the boundary layers onwalls AA and also thevelocity flux through them. 
When the walls A A  are non-conducting and the walls BB perfectly conducting, he 
found that large positive and negative velocities of order Mv, are induced, where 
v, is the velocity of the core. This fact indicates that the magnetic field may de- 
stabilize the flow in certain types of duct. It is this effect of the conductivity 
of the walls on the flow which gives the problem its physical interest and suggests 
the need for solving the outstanding problems. 

In  ducts of most practical value the walls AA are conducting and the walls 
BB are non-conducting; this case is not included in any of those examined by 
Hunt and at present no complete analytic solution is available. Grinberg 
(1961, 1962) has, however, reduced the problem to the solution of an integral 
equation, whose kernel is the Green’s function for the problem and involves a 
double infinite series of Bessel funtions. When the Hartmann number M is 
large, only the leading terms of this series need be retained and he was then 
able to solve the simpler equation. In  order to determine the current and 
velocity distribution and the mass flux down the tubes, however, further numeri- 
cal work needs to be done. In  this paper we approach the problem of the flow 
at high Hartmann numbers using a boundary-layer technique which has the 
advantage that the analysis is more transparent and it is easier to form a physical 
picture of the properties of the magnetic and velocity fields. Expressions are 
obtained for the leading terms in the expansion of the flux through the duct in 
descending powers of H*. Also diagrams and a graph are displayed showing 
representative velocity and magnetic fields in the neighbourhood of the walls AA 
where their structure is complicated. 
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Usually the walls A A  are electrically connected and either the duct supplies 
current to a load or a potential difference is placed across the walls AA to drive 
the flow. We show that if the walls AA are sufficiently highly conducting, the 
external electric circuit has no effect on the mathematical problem and that i t  is 
a trivial calculation to work out its effect on the flow parameters. Some examples 
of external circuits are given. In  comparing the cases where the walls AA are 
conducting and the walls BB are non-conducting and where all the walls are 
conducting we find as before, that the conductivity of the walls has a marked 
effect on the flow in the boundary layers on the walls AA;  we also find that in 
some cases the conductivity of the walls in the corners is important since the 
current distribution in the corners affects the rest of the flow in the boundary 
layer. 

2. The formulation of the problem and the basic solution 
We consider the steady flow of an incompressible conducting fluid driven by a 

pressure gradient along a rectangular duct under an imposed transverse magnetic 
field. We assume that no secondary flow is generated and that there is no varia- 
tion, either in the duct cross-section or in the imposed magnetic field, with dis- 
tance z along the duct. It is also postulated that any external circuit connected 
to the conducting walls of the duct is continuous and unvarying in the streamwise 
direction. (This condition may be relaxed if the conductivity is sufficiently 
small.) Thus all physical quantities except pressure are independent of z. Relative 
to the axes defined in figure 1, the equations describing such flows are: 

Here j,, j, are the components of the current, 4 is the electric potential, H, 
is the induced field and may also be regarded as a current stream function, Bo 
is the flux density of the imposed magnetic field, v, is the velocity, u the conduc- 
tivity, jz the viscosity and ap/az the pressure gradient which is a constant. The 
equations can be re-written to give two coupled second-order partial differential 
equations in H, and v8, viz. 

We take the lengths of the sides of the channel to be 2a and 2b (see figure 1) 
and suppose that the sides y = -+_a (BB) are non-conducting, while the sides 
x = 2 b (AA)  are perfectly conducting. It follows that the boundary conditions 
are V, = 0, aHz,lax = 0 when y = +a, (2.6) 

v,= 0, aH,/aX = 0 when x = kb. (2.7) 
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Thus on the walls y = & a, H5 is independent of x and consequently we can modify 
(2.6) to 

v, = 0, H, = H, when y = a;  v, = 0, H, = H, when y = -a, (2.8) 

where HI, H, are constants. The net current I leaving and entering the walls A A  
per unit length of the duct is simply related to H,, H,: 

B 
A 

A YlT 

FIUURE 1. Cross-section of a rectangular duct with the magnetic field in 
the y-direction. The walls AA lie at x = 5 b and BB at y = +a. 

2a 

1 

The governing equations and boundary conditions may now be reduced to a 
non-dimensional form by writing 

6 = x/a, 7 = y/a, M = aB,(cr/p)*, (2.10) 

X I 5  
A 

A 

B 

(2.11) 

The equations satisfied by v, h are 

(2.13) 

subject to v =  0, h =  0 when q =  +I, 

and v = O ,  ah/at=O when k = & b / a = + c .  (2.14) 

We are particularly interested in the properties of the solution when M % 1 
and to find them we proceed by a heuristio argument, relying for justification 
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on the consistency of the results. For large M the interior of the duct may be 
divided into five parts, as indicated in figure 2. These are: 
(a) The core region consisting of the majority of the interior but excluding 

the neighbourhoods of the walls. 
(b)  The primary or Hartmann layers, of thickness O(M-l) ,  near the walls 

7 = k 1 but excluding the regions distant O(M-4) from the side walls E = f c. We 
use the word primary for these boundary layers to emphasize their control of the 
flow in the core (a) and to distinguish them from (c). 

*o  

O(M-1) - 

O(M-') ~ 

O(M-lla) - 

B 

(b) 

- - - - f- - - - - -- 
Piimary or Hartmann 

boundary layer 

(a) Core 

\ 
Secondary boundary layer 

FIUURE 2. Cross-section of the duct showing the various regions of flow 
when M 1 (not to sale). 

(c) The secondary boundary layers, of thickness O ( M a ) ,  near the walls 
5 = & c, so called because they are determined from the core flow and the primary 
boundary layers but do not exert a decisive control on them in return. 

(d) Those parts of the primary boundary layers at a distance O(M-4) but 
9 M-l from the side walls 6 = k c .  

( e )  Those parts of the interior of the duct within a distance O(M-l) of the four 
corners. 

Of these regions ( e )  is of the least importance and the most difficult to treat 
when M is large; we shall discuss it only by order of magnitude arguments. 
The other regions can, however, be discussed in detail as follows. 

2.1. Coreflow (a) 
Since this region extends over almost the whole duct it follows that 8/86, 8/87 
are O(1). Further, from the boundary conditions and differential equations h 
must be odd and w even in 7. Anticipating that w and h are of the same order of 
magnitude we then have from (2.13) that 

(2.15) h = ho G -7 /M,  v = V, E g(E)/M, 
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where g(6)  is a function of 6 to be determined, and terms of order M-2 have been 
neglected . 

2.2. The primary boundary layer ( b )  near g = 1 

The core solution (2.15) fails to satisfy the bundary conditions at the walls and 
in particular at g = f 1. Consequently there must be boundary layers near these 
walls to make the necessary adjustments in v and h and, since they are ex hypo- 

(2.16) 
thesis thin, in them 

Writing v = v,+v,, h = hc+hp, (2.17) 

a / @  B a p t .  

and concentrating attention on the boundary layer near g = 1, up and hp satisfy 

(2.18) 

in virtue of (2.16) together with the boundary conditions 

hp = 1/M, up = -g(()/M a t  7 = 1, 161 < C, (2.19 a)  

and vp +- 0, hp -+ 0 (2.19 b)  

on leaving the immediate neighbourhood of g = 1. A consistent solution of (2.18) 
satisfying (2.19) is only possible if 

(2.20) 

and then (2.21) 

Thus the core velocity is determined by the condition for the existence of the 
primary boundary layer and, as anticipated in (2.15), is of the same order of 
magnitude as the induced magnetic field. Further the thickness of the primary 
boundary layer is O(M-l), and the associated defect in velocity flux is 

(2.22) 

where Y = (1 - g) M. The primary boundary layer near g = - 1 may be treated 
by a parallel argument but we do not need to deal with it explicitly here since v 
is known to be even and h to be odd in g. 

2.3. The secondary boundary layer ( c )  near 6 = c 

The core solution is now fully known and does not satisfy the boundary conditions 
a t  5 = & c. Consequently there must be boundary layers near these walls, to 
make the necessary adjustments in v and h and, since they are ex hypothesis 

apt % a h .  (2.23) 
thin, in them 

Writing v = v,+v,, h = h,+h,, (2.24) 

and concentrating attention on the boundary layer near 6 = c, v, and h, satisfy 

(2.25) 
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in virtue of (2.23), together with the boundary conditions 

ah,/a( = 0, v,= -1 /M at 6 = c, 171 < 1 ,  ( 2 . 2 6 ~ )  

and h, + 0, v, -+ 0 (2.263) 

on leaving the immediate neighbourhood of 6 = 1. These obvious boundary con- 
ditions are, however, insufficient to solve the differential equations (2.25) 
completely. In  addition we must know something about v,, h, at a station or 
stations of 7. In  the same way that region (b )  provides the additional information 
to determine region (a), the regions ( d )  provide the extra boundary conditions 
needed here. We shall anticipate the discussion of regions (d) here and state the 

v,+h,+O as q + l ,  vs-hs-+O as 7-f -1 ,  (2.27) conditions 

referring the reader to (2.52) below for their justification. 
In order to solve (2.25) i t  is convenient to write 

h, = a(y)/M at 6 = c ,  (2.28) 

which means that, in effect, we are specifying the current distribution on the walls 

x = vs+hs, (2.29) AA.  Further write 

and then, since v, is even and hs is odd in 7, we have 

V, = 4[x(7)+X(-7)17 h, = $[x(7)-X(-7)1- (2.30) 

Now X satisfies 
a2x ax 
- + + M - = O ,  

a7 

and the boundary conditions (2.26) and (2.28) become 

when 5 = c, 

(2.31) 

(2.32) 

X 4 0 on leaving the vicinity of 6 = c, and X = 0 at 7 = 1. Leaving the con- 
dition on aX/at on one side for the moment the general solution for X is 

To satisfy the condition on aX/ag, it  follows on differentiating (2.33) with respect 
to 6 and setting 6 = c that 

(2.34) 

Thus the problem has been reduced to finding the value of a(7) which leads to 
a constant electric potential on the walls AA.  

The equation (2.34) may be cast into a recognizable form by writing 

47) = 1 - 47) (1 + 713. (2.35) 

Multiplying it by (6- q)-* and integrating from - 1 to 6 with respect to 7: 

(2.36) 
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This equation has a known solution (Rott & Cheng 1954) €or a general right- 
hand side, which reduces in our case to 

8(1-q2)f s2 as 

4 1  +7)  1 (s4+$) (s4- 1)A’ s a(q) = 1 -  (2.37) 

where @ = (1 - 7)/( 1 + 7). Thus a may be expressed in terms of a hypergeometric 
function. In  particular when q x 1, $ is small and 

(2.38) 

a + 0 as q -+ 0 and a is of course an odd function of 7. Knowing a(7) we can 
calculate X, v, and h, from (2.33) and (2.32). 

In  an earlier paper by one of us (Hunt 1965) it was shown that, if the walls 
5 = f c are non-conducting and the walls 7 = & 1 perfect conductors, then the 
velocity in the secondary boundary layers is an order of magnitude greater than 
the core velocity and contains an infinite number of reversals of sign. If all four 
walls are perfect conductors, then the velocity also oscillates an infinite number 
of times in the secondary boundary layer, although in this case there are no 
reversals of sign and the velocity is of the same order of magnitude as in the core. 
It is of interest therefore to examine the nature of the boundary-layer flow in the 
present problem. At large distances (in terms of (c - g) H*) from the wall 6 = c, 
the structure of the boundary layer in X is given by the behaviour of a near 
7 = 1. From (2.38) 1 -a N (1 - q)* as q ic 1 - and hence, from the similarity 
solution of (2.31) satisfying 

X = O  at q = 1 ,  X + O  as ~ - + - - c o ,  X - ( ~ - q ) i  at E=c,  

we find that when (c - 5) M* is large 

(2.39) 

so that the number of oscillations in w is a t  most finite. A graph of v as a function 
of N*(c - 6 )  for q = 0 is given in figure 3 and shows that in fact w never changes 
sign. Lines of constant h are shown schematically in figure (5 ) .  

In  order to calculate the overall velocity flux, we have to work out the flux 
deficits due to the boundary layers. Since h is an odd function of 7, the flux 
deficit due to the secondary boundary layer is given by 

where = ( C - 5 ) B k  

so that the flux deficit is 

(2.40) 

(2.41) 

(2.42) 
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On substituting from (2.41) into (2.42) we obtain, after formal manipulation, 

(--a)! 28 -- (+a)! M4 

for the flux deficit due to this boundary layer. 

1 *o 

0.8 

0.6 
u 
9 
3 

0.4 

0.2 

(2.43) 

1 

1 -0 2.0 3.0 40 
M*(C - E )  

FIGURE 3. Graph of w/w, against M*(o- E )  at 7 = 0 in the boundary layer at 5 = c. The 
value of M is arbitrary, provided M S- 1. 

2.4. Primary ~ o u ~ a r y  Eager (d)  near the corner f; = c, 7 = 1 

v = V,+V,+V,, h = h,+h,+h,, (2.44) Taking 

we satisfy the governing differential equations provided we can neglect terms 
O(M--2). The boundary conditions on the walls = c and 7 = 1 are also satisfied, 
provided we can neglect exponentially small terms and provided we exclude the 
neighbowhood of the corner E = c ,  7 = 1. Specifically the conditions are not 
satisfied when f; = c and r ]  = 1 -O(M-l)  and when r ]  = 1 and & = c-O(M-8). 
It is the second of these with which we are concerned here and we shall briefly 
refer to the other in $2.5. If instead of (2.44) we write 

v = V ~ + V , + V ~ + V , ~ ,  h = h,+h,+hs+hpl, (2.45) 

where vpl, hpl satisfy the same differential equations as v, h, then, on the wall 

(2.46) 
7 = 1, we must have 

Although the values of v,, h, on the wall 7 = 1 vary rapidly with 6, the scale is 
much larger than the scale of the primary boundary layer, O(M-8) compared with 
O(M-l), and hence we are justified in assuming that usup,, hpl satisfy the condition 
a/ar] >> a/af;, whence 

(2.47) 

vPl + V, = 0, h, + hSl = 0. 

UP1 - - - v,(f;, 1) e-Jf(1-1, hpl = -ha(& 1) e-Jf(1-7). 
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It follows that a consistent solution is only possible if 
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v&, 1) + hAk, 1) = 0, (2.48) 

as assumed earlier in (2.27). The other condition in (2.27) follows from a parallel 
argument for the wall q = - 1. It is noted that, if the wall 7 = 1 is a perfect 
conductor, v = 0, ahla7 = 0 there, and a parallel argument shows that the 
condition satisfied by v,, h8 at q = 1 is then 

v,(5,1) = 0. (2.49) 

2.5. The corner 6 = 0 , ~  = 1 

The assumptions leading to the primary boundary layer (d) and the secondary 
boundary layer (c )  fail when both 1 - 5 and 1 - 7 are O(M-l) ,  i.e. in region (e). 
No simplification in the governing equations is possible therefore in this region. 
However its effect on the flux is small, being of the order of the maximum velocity 
multiplied by the area, i.e. O(N-S), and consequently we have not attempted to 
elucidate its properties. 

The leading terms in the asymptotic expansion for the flux of fluid through the 
tube when M is large may now be written down 

(2.50) 

The term O(M-&) arises partly from the neglect of a2v/a72, a2h/a72 in the secondary 
boundary layer and partly from the deficit due to the primary boundary layers 
(d). In  principle it can be calculated using the methods of this paper but we 
have not done so. 

3. Practical implications 
I n  $2 it was shown that, whatever the value of I ,  the net current leaving and 

entering the duct, the problem of calculating the velocity and current distribu- 
tions could be reduced to the solution of two differential equations with a single 
set of boundary conditions. It follows that the velocity distribution is always 
the same, though the magnitude of the velocity depends on the values of I ,  M 
and ap/ax. It follows from (2.12) that the distribution of current density does 
vary with the external circuits, but in a simple manner: j, varies in magnitude 
but its distribution does not change: j, has two constituents one of which,jxl, is 
constant throughout the duct, but varies with I ,  and is given by 

the other, jZz,  whose distribution is always the same but whose magnitude varies, 

. a*uP8Hs is given by 
32, = -- 

where P = B, I /2a - apl8.z. 
In  $ 2  we also found the velocity and current distributions and a relation 

between &, ap/az, I and M .  In  this section we use this information to examine the 
effect of electrically connecting the walls AA for the various practical applica- 
tions of the duct. 

j Z l  = B(H,-H,)/a; 

(F)*  8Y ’ 
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The type of duct whose walls BB are non-conducting and walls AA are 
perfectly conducting has many applications. Shercliff (1965) has recorded how 
such a duct for which b % a acts as a pump, flowmeter, generator or brake depend- 
ing on the value of - E,/B,V,, where E, is the electric field in the core and V, 
is the mean velocity; V, = V,( l -  I / M ) .  If b N a and the effects of the walls AA 
are considered, a new parameter has to be defined. In  interpreting experiments 
or designing equipment the following five parameters are of most interest: 
Q, ap/az, B,, I ,  and A$, the electric potential difference between the walls AA 
given by 

Usually we are given three of these parameters and we wish to find the other 
two in terms of these, e.g. in designing an electromagnetic pump we would want 
to calculate I and A$, given Q, ap/az, B,, and the fluid properties. 

To find A$ integrate equation (2.1) from x = - b  to x = b and from y = -a  

b BoQ 
aa 2a 

to y = a, which leads to 
-A$ = - I + - .  

This equation shows that to an external electric circuit the duct is equivalent to 
an e.m.f. U, = QBoQ/a in series with a resistance R, = b/aa. The replacement of a 
device in a d.c. electric circuit by an e.m.f. and a resistance is familiar to electrical 
engineers as Thevenin's theorem. By the same theorem any linear external 
circuit may be regarded as a resistance Re and an e.m.f. U,. Hence, in the general 
case A#, aplaz, Q, M and I may be calculated from the following relations: 

A$ = -U,-R,I = Ue+ReI, 

or A$ = - QB,Q/a- (blca) I = Ue+ ReI,  (3.3) 

and Q =f(iBoI/a-ap/a~ MI. (3.4) 
In  $ 2  we calculated the function (3.4). See (2.50), which may be re-written as 

We now examine three special cases. 

3.1. Open-circuit case 
When the duct is on open circuit, I = 0. In  this case the duct is a flowmeter. It 
follows from (3.5) that 

and from (3.3) that A# = - +&&/a. (3.7) 

This fact has been noted many times before (see Shercliff 1962, p. 16). 

3.2. Short-circuit case 
In  this case the walls AA are joined by a circuit of zero resistance (Re = U, = 0) 
and consequently A# = 0. This device is an electromagnetic brake or generator 
on short-circuit. 
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Equation (3 .3)  becomes, 
2bI 

0 = T + B O Q ,  

and hence (3.5) becomes 

0 . 9 5 6 ~  1 1 - - - -  It follows that 
( - agqaz) 4a3b bM* M '" 

& =  pM2 [ 1 - - O ( M - - # ] '  

l - - - O ( M - # )  . 1 ( - ap/az) 4a3b [ ; 
and re-arranging Q = p f M 2  (3.9) 

Though the form of the Q - ap/az relation is different in this case from the open- 
circuit case, the velocity flux deficit due to the secondary boundary layers aa a 
proportion of the flux through the core is the same, since the velocity distribution 
is unaffected by external connexions. There is no term of order (M-4) in the 
bracket, as one might expect, because the core velocity V ,  is given by 

(3.10) 

Thus the flow in the core is not the same as that for flow in a duct whose walls 
are all perfectly conducting. In  that case 

This difference is explained by the fact that in the latter case E, = 0 in the core, 
whereas in €he former case, even though A$ = 0, E, + 0 in the core because of 
the defect of v x B in the secondary boundary layers. 

3.3. Purely electrically driven case 
When the pressure gradient is zero and the flow is electrically driven by the 
potential difference across the walls AA,  the device is a limiting form of MHD 
pump. Since ap/az = 0, equation (3.5) becomes 

Combining this result with (3.2) leads to  

2aAq5 1 
Q = - __ [ 1 - - 0 (a)]. 

BO bM#, 

(3.11) 

(3.12) 

In  the two previous cases either I or Aq5 is zero, whereas in this case we can obtain 
a useful relation between I and Aq5 by dividing (3.12) by (3.11), 

(3.13) 
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It is interesting to note that in the core j, = 0 since ap/az = 0. All the current 
is in the primary and secondary boundary layers (see figure 5 ( b ) ) .  

From an examination of these three special cases it follows that the para- 
meter which describes the particular application of a duct for which b - a is 
- 2aAq5/B0 Q as opposed to - E,/B&, in a duct for which b % a. 

4. Discussion 
In  $2, we analysed the flow through ducts whose walls A A  were perfectly 

conducting and walls BB were non-conducting. The flow was assumed to be lami- 
nar, incompressible, uniformly conducting, and fully developed; also the Hart- 
mann number ( M )  was assumed to be large. In  $3, we showed how the results of 
the analysis could be used for ducts with various electrical connexions between 
the walls AA.  In  this section we compare the previous results with those obtained 
for other types of duct and we show how some of the effects of the conductivity 
of the walls on the flow may be interpreted physically. 

For a duct whose walls AA are perfectly conducting and walls BB are non- 
conducting, we have been able to analyse the flow only for very large Hartmann 
number. For our purposes this is no great disadvantage since a solution at high 
M is sufficient to illustrate the essential physical features of the flow and also it 
is quite usual in liquid metal experiments to have M greater than 100. In  this 
discussion we shall concentrate on flows with M % 1. 

At high M ,  provided the conductivity of each of the walls BB is constant along 
its length, the value of the conductivity of each of the walls BB does not affect 
the form of the velocity profile away from the walls AA. The velocity is constant 
except in the narrow primary or Hartmann boundary layers on y = rt_ a. How- 
ever, the magnitude of the velocity in the core depends on the conductivity of 
the walls BB as well as on the pressure gradient and any external electrical circuit 
connected between the walls AA. 

Though boundary layers are also found on the walls A A  as M + co, their 
form changes considerably with the conductivity of the duct walls. It is these 
secondary boundary layers which have been little understood hitherto. The 
three main characteristics of these boundary layers are the velocity profile, 
the current distribution and the velocity flux deficit, as defined in (2.40). It 
does not seem possible to provide convincing explanations for the shape of the 
veIocity profiles, a priori, but it is possible to provide a physical explanation 
for the current distribution and velocity flux deficit and thence to explain the 
shape of the velocity profile. 

Let us now compare the flows in two types of rectangular duct: 
Case (i) Perfectly conducting walls all around. 

(ii) Walls A A perfectly conducting and walls BB non-conducting. 
In  case (i) the velocity profile in the secondary boundary layers has the form 
of a damped sine wave and the velocity flux is given by 
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so that the flux deficit is O(N-4) times the flux in the core (see Hunt 1965); 
in case (ii) the velocity in the secondary boundary layers monotonically decreases 
to zero at the wall, and the flux deficit is O(N-4) times the core velocity (see 5 2). 
These values of flux deficit were obtained by mathematical rather than physical 
arguments. To show that the difference in flux deficit between cases (i) and (ii) 
is explicable physically, we now give arguments by which the orders of magni- 
tude of the flux deficits are estimated. 

4.1. All the walls are perfectly conducting-case (i) 

We consider the secondary boundary layer on the wall A at x = - b (see figure 4). 
Let 

v, = v, + up + us, (4.2) 

where, as before, the suffices c, p and s refer to the core, primary and secondary 
boundary layers, respectively. 

Secondary, 
current 

I R 

c--- 

-Core current 

c--- 

O(M-4) 

FIUURE 4. Cross-section of the duct when all the walls are perfectly conducting. (M & 1, 
not to scale). (a) Shows the actual current streamlines. (b )  Shows the core, primary and 
secondary current streamlines. 
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Making the usual assumption that in the boundary layer on walls A A  

equation (2.3) leads to 

Sincej,B, = ap/az and av,/ax = 0, (4.3) becomes 

Let the thickness of the boundary layer be 6, then 

Now since the current in the core enters the wall A ,  Exlx=--b = O(jc/a).  Since 
Ex = 0 at y = f a ,  aEx/ay = O( -jc/aa) for y > 0. But 

aEu/ax = O ( j , / d )  and aE$y = aEu/ax, 

and hence j,/a = - O(jJ8). But aj,/ay = - aj,/ax since aj,/ax = 0. Hence 

j,/S = O(jy /a)  = 0 ( -j,6/a2) 

and j, = - 0(82jc/a2). (4.6) 

From equations (4.5) and (4.6) we have, 

j i ~ , / 6 ~  = O( - 6'B ,,jc/a2). 

B ~ v ,  = -jc/g. 

(4.7) 

(4.8) Since Ex = 0 in the core, 

Combining (4.7) and (4.8) we deduce that 

8 = O(a2M-4). 

Using (4.9) we now have an expression forj,: 

(4.9) 

j, = O(,EMV,./U~B~). (4.10) 

E .  dl taken round the path PQRX on figure 4 (b ) .  Since Eu = 0 Now consider 
in the core and along PS, and Ex = 0 along RS, 

Q 
E . dl = IP Exdx. 

But in steady flow f E . dl = 0. Therefore Exdx = 0, and hence s," 

37 Fluid Meoh. 23 
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But from (4.8),jc/a+ B,v, = 0. Then, using (4.10) and assuming thatj,is mainly 

and (4.11) 

Hence the ratio of the flux deficit due to the secondary boundary layer to the 
flux in the core is O[M-%], in agreement with the exact analysis. 

4.2. Walls AA perfectly conducting and walls BB non-conducting-ctzse ( i i )  

The notation is the same as for case (i). We can then proceed to equation (4.5) 
as before. In  this case the walls BB are non-conducting and consequently 

is a constant for all values of x (see figure 5). 
Therefore all the secondary current j, leaving the wall A will have to return 

at the corners via the region (d )  on wall B. If j,= ji in region ( d ) ,  then, for con- 
dition (4.12) to be satisfied, 

j:a/M = O( -a&), 

and hence j: = O( - Mj,). (4.12) 

We can deduce the value of j: from the equation of motion in region ( d ) .  If 
v, = v: in this region, then 

a 2  

aY 
0 = -~p/az+(j,+j,+j:)B,+~~(vc+v,+v~). 

The boundary conditions on v, are (i) wj = v, = - 8(vc)  in the main part of the 
secondary boundary, layer, i.e. region (c), and (ii) v, = 0 on y = &a. Since the 
thickness of this layer is O(M-I), 

(4.13) 

Hence, from (4.12), j ,  = + O  ($Mvc/a2) ,  (4.14) 

But, from ( 4 4 ,  

and therefore 6 = O(aM-3). 
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I U  = Current 1 +'-j I - - streamlines - 2- - 

Secondary- 
current 

:M-) 

Current 
in from 

(c> 
FIUUF~E 5. Cross-section of the duct when the walls A A  are perfectly conducting and the 
wall8 33 are non-conducting (M I, not to scale). (a) Shows the current streamlines 
when the duct is on open circuit. ( b )  Shows the current streamlines when the flow is 
driven by a potential difference between the walls AA. (The current in the walls A A  is 
shown schematically.) ( c )  Shows the core, primary and secondary currents when the duct 
is on open circuit. 

Now consider $ E .dl round P'Q'R'S', where P' S' are on the wall A ,  R' is 
on the wall B outside the secondary boundary layer and Q' is in the core (figure 
5 (b)). Since E, = 0 in the core and along the wall A ,  

Now 

and 

Making the same assumption as for case (i), that jLdx = O(Sji) we have so6 
vsdxdy = - O(v,a2/Mt). /:sI, 

f Thus I," E,dx * 0 in this cue, whereas E,dx = 0 in case (i). The consequences J: 
of this were discussed in 8 3. 

37-2 
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Hence the flux deficit due to the secondary boundary layer is O(M-4) times the 
flux in the core. 

We see from these order-of-magnitude arguments that the form of the boundary 
layer on the walls A A  is best explained in terms of the secondary currents induced 
in these layers, much in the same way as the Hartmann layer may be explained 
by the decrease in current in the boundary layer relative to that in the core. In 
both these types of boundary layer the current is less than its value in the core 
because of the reduced v x B induced electric field and consequently the 
electromagnetic j x B force can decrease in the layer relative to its value in the 
core to the same extent that the viscous stress increases. If this were not so, 
the boundary layers would grow or diminish. A comparison of cases (i) and 
(ii) shows that the value of the secondary currents relative to the core currents 
can differ by an order of magnitude. 

In  case (i), j, = - 0 ( j c M - l ) .  
In  case (ii), open circuit, j ,  = - O(jc). 
In  case (ii), closed circuit, j, = - 0 ( j c M - l ) .  

Yet expressed as a fraction of vc, the values ofj, are of the same order in both 
cases. This is necessary for the balancing of viscous and electromagnetic forces 
in the boundary layer. We make this observation because the approximation 
made by Kerrebrock (1961) and others that the current is constant through the 
secondary boundary layer, i.e. j, = 0, even though j, is a very small fraction 
ofjc, will lead to results which may over-estimate the rate of growth of boundary 
layers on the walls AA.  

The order-of-magnitude arguments also show how the conductivity of the 
walls affects the secondary currents which in turn affect the velocity distribution 
in the duct. In  case (ii) when the walls BB are non-conducting, the secondary 
currents circulate in the duct and walls AA ; they leave the walls AA in region (c )  
and return through the Hartmann layer on walls BB, region (d). This is similar to 
the way in which the core currents return through the Hartmann boundary layer 
when the walls BB are non-conducting (figure 5 (c)) .  In  case (i), when the walls 
BB are perfectly conducting, the secondary currents mainly return to the walls 
A A  via the walls BB. Owing to the oscillatory nature of the boundary layer in 
this case, some currents circulate solely in the duct and walls BB (see figure 4 ( b ) ) .  
Thus in case (ii), because the secondary current has to return through a narrow 
layer of thickness O(M-l)  on walls BB, the resistance of the current path is higher 
than in case (i); hence the secondary current, relative to the core velocity, is 
lower. This means that the viscous stresses in the secondary boundary layer are 
less in case (ii) than case (i). Since v, has to rise from -0, to 0 as M*(z+b) 
increases from 0 to co, then the lower a2v,lax2 and av,/ax are, the greater will be lom v8dx, i.e. the flux deficit. As we have already noted, in case (i), the flux deficit 

in the secondary boundary layer relative to the flux in the core is O(M-l) times 
as small as the flux deficit in case (ii). We see now that the explanation lies in the 
influence on the secondary currents of the conductivity of the walls BB in the 
corner regions. 
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This may be illustrated further by comparing case (i) and case (ii) when the 
walls AA are short-circuited. The Q-- ap/$ relation in these two cases are both 
of the form 

( - aplaz) 4a3b (l-&-iO(M-il)  ... 
& =  pM2 

walls AA are short-circuited. The Q-- ap/$ relation in these two cases are both 
of the form 

( - aplaz) 4a3b ( l -&- iO(M-%) ... 
& =  pM2 

even though the velocity profiles are very different (see $3). If we were to alter 
the duct of case (ii) and make the walls BB conducting for a distance O(aM-4) 
from the corners, then we would not alter the Q - apjaz relation but we would 
change the velocity profile, the core velocity from 

and the ratio of the flux deficit due to the secondary boundary layers to the 
flux in the core from O(M-4) to O(M-8). The reason is that the extra pieces of 
conductor would increase the secondary currents and hence reduce the flux 
deficit and potential difference across the secondary boundary layer. The value 
of the core velocity would be reduced, but the form of the core and primary layer 
flow would of course be unaltered. 

We have stated already that we can give no good reasons, a priori, for the 
shape of the velocity profile in the secondary boundary layers; all we can do is 
to deduce the shape from the flux deficit. In  cases (ii) and (iii) the flux deficit 
is O(M-4). Since the thickness of the secondary boundary layers is O(aM-4)’ 
there is no reason to expect that the velocity does not uniformly decrease from 
its value in the core to zero at the walls. In  case (i) the flux deficit is O(M-4)  
and the boundary layer thickness is still O(M-*). This explains why the velocity 
in the boundary layer must be greater than its value in the core over part ofthe 
boundary layer. The velocity profiles for case (i) are given by Hunt (1965). 

We are grateful to Prof. J.A.Shercliff for his helpful advice and criticism 
in the preparation of this paper. J .  C. R. H. is able to publish this work by per- 
mission of the Central Electricity Generating Board. 
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